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I. INTRODUCTION

The incomplete beta function Ix(alb) is defined byIx
Ix(a,b) =G(ab)f ta-I (1 t)b- dt, a>O, b>O, 0<x<l (1)

I

B(a,b)- 1/G(ab)=J ta-1 (1-t)b-1 dt =r(a) (b)/r(a+b), [10, p.36], (2)

where the gamma function r(u) is given by

Thus 11(a,b)=l. In addition, if 0<x<l then Ix(0,b)=1 and Ix(a,)=O.

The quantity 1Ix(a,b) is called the complement of Ix(a,b). Using u=l-t in (1) and (2)

yields

I- Ix(a,b) =ly(b,a), y=1- x. (4)

The function ]x occurs in many branches of science, including atomic physics, fluid dynamics,

transmission theory, lattice theory, and operations research. It is perhaps best known for its extensive

applications in statistics. In particular, the well-known central F-distribution P(Fo1V,V 2 ) can be

obtained from Ix by the following substitutions :

a=vl/2, b=V2 /2 , t=v1 F/[v 2 +vF] , Fo= bx (5)
a( - x)'

where

P(Fo VI, 12) =-V 1 /2 2  G , -) (v+viF)-(.+' 2)/2 dF (6)

Q(Fo I VI, V2)= 1 - P(F 01 v 1 , v 2)='lI x(V 2/2, v1 /2). (7)

The incomplete beta function is also directly related to the Student's t-distribution A(t 01v) and the

binomiial distribution E(n,r,x), where

P(Itl<to) =A(tol v)=2 G2 ( , L to (I/+t2/V)-(+)/2dt (8)

= I - Ix(v/2,1/2), x= VI/[+t2,
n -

E(nrx-)=Fx()xi (I- x)ni lx(r,n-r+). (9)

Derivations of these well-known results are given in (4].



Procedures for computing Ix date back to Newton. A historical survey outlining some of the

analytical and approximation methods used for evaluating Ix is given by Dutka [7]. An extensive

literature search for a robust algorithm to compute Ix did not reveal a publication that would lead to a

subroutine acceptable for inclusion in a high quality main frame mathematics library such as the

NSWC Library of Mathematics Subroutines (NSWCLIB), (9]. The best procedure found was in a report

written by Amos and Daniel [2]. For a special case however, where a and b take positive integer and

half-integer values, an algorithm exists, with an associated Fortran subroutine ISUBX, which yields Ix

with 9-10 decimal-digit accuracy, (4, 51. It is contained in NSWCLIB.

In this report an algorithm is given for computing Ix and I- Ix . A transportable Fortran

subroutine named BRATIO has been written which uses the algorithm. BRATIO is designed for use on

computers having k-digit single precision floating arithmetics where 6<k<14. On the CDC 6000-7000

series computers, BRATIO yields results accurate up to 14 significant digits for both Ix and 1 -I x .

BRATIO is available for general use in the NSWC mathematics subroutine library, [9].

A primary region of difficulty for computing lx(a,b) and I -Ix(a,b) has been when a and/or b

is large and x:a/(a+b). In this region Ix changes rapidly from 0 to 1. A continued fraction, with new

weighting factors, and a new asymptotic expansion are used to treat this region satisfactorily.

Section II contains the basic equations and algorithms used for BRATIO. Section III describes

in a, b, x space the regions of use for these basic relations. An associated flowchart for BRATIO is

included. Section IV describes a number of specialized algorithms required in order to use the basic

relations effectively. Section V briefly summarizes the accuracy and efficiency of BRATIO, and section

VI contains a few examples using BRATIO. Appendices A, B, and C contain proofs for some results

which are used in BRATIO. A Fortran listing of 3RATIO and its required subprograms is given in

Appendix D.
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II. BASIC RELATIONS

Throughout we shall use

p=a/(a+b) q=l-p=b/(a+b). (10)

Also since Ix and l-I x are to be computed to the greatest possible accuracy,

y=1-x (11)

is required as input in addition to a, b, and x. In BRATIO, relations (12)-(16) are used to compute

either Ix or its complement. Their domains of application are given in Section III.

BPSER

Ix(a,b);G(a,b)- Nl a (1b)(2-b). ) (12)j=1 j! (a+j)

The series is obtained from (1) by replacing the second factor in the integrand with its binomial

expansion. Relation (12) is used only when x<0.7 and b<1, or bx<0.7.

Given a tolerance c>0, (12) is computed by the function BPSER(a,b,x,c), where

a N

Ix(a,b);G(a,b) (l+aZ, wn ) (12.1)
(n=--1

wn=zCn/(a+n), Cn-=Cni-(1-b/n)x, C0 =1 (12.2)

N =the smallest integer such that aIwNl<c.

BUP

ab N
ix(a,b)-lx(a+ N,b)=xay E F(b)(a+j) 2, (N >1) (13)j=j ~~~+j

Given a tolerance c, (13) is computed by the function BUP(a,b,x,y,N,c). BUP is used only

with BPSER or the next relation to be described, BGRAT. Relation (13) follows from

lx(a+l,b)=Ix(a,b)-xay bG(ab)/a, which can be obtained by substituting

(a+b)ta(l-t)b- i = ata-1(1-t)b- i - A[-ta (l-t)b] (13.1)
in 

d

[x(a+l,b)= a+b r ta(l_t)b-ldt.
aB( a,b) f 0

Equation (13) can be rewritten in the form

a b N-I . a+b+i (J
lx(a,b)-Ix(a+ N,b)=axayb ilx', d + a - d0 . (13.2)aB(a,b) i= I - Tl+-i "
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If b<1 then for i>O, d.i+ <5d and the sequence h. -dixl is monotonically decreasing. Thus, the

computation of the sum Zhi can be terminated when a term hmdmx m is reached that satisfies

m
hm:5c Ehi, or m =N -1.

1=0

When b>1 then hi!ilif and only if x (a±1+i)/(a+b+i)-ri. Also we note that r i<r i when

i<j. Thus if k is the largest integer such that x~r k- 1 then

Therefore, if k is the largest integer for which k<(b-1)x/y-a, then the computation of the sum Eh i
m

can be terminated when a term hm (m>k) is met that satisfies hm<Zc hi, or m=N-1.
i=0

BGRAT

Ix (a,b);z M L nJ (,u) MIab r , a>b (14)
n=o F(a-)Th

T=a+ b-2-, u = -T In x, r=e- ub/r(b), J0 (b,u)= Q(b,u)/r (14.1)

Pn(- ,c n-1i
P=bIcl+nE(mb-n) cm Pn-m , cm-( 2  -+) ,) P0= 1  (14.2)

m= I

Q(b,u) =J0 e- tb- dt (incomplete gamma function) [I; p.2601 (14.3)
fu (b)

Jn,(~u =(b+2n) (h+2n+I) Jnbu+u+b+2n+1 (In X\2n(44
Jn~~bu)4T 2  Jnbu+ 4T2 2j(44

L
L= smallest integer such that I PO9LI!' F- c( Pn Jn+wo/M). (14.5)

Relation (14) is used only when a>15, b<1, and x>0.7. Given c, (14) is computed by the

subroutine BG RAT(a,b,x,y,w, (,IERR) where w and IERR are variables. Given an initial value wo for

w, then BGRAT assigns w the value wo+lx(a,b). IERR is an indicator which is set when underfiow

forces the computation of (14) to end prematurely.

Equation (14) was derived by Wise 115]. Our derivation follows:

-y/TIf t=e , then

ta-, (Iab- fd0 -Y b-, Je~h (-)dy (14.6)

where T and u are dlefined1 above. Substituting
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n __ 2j+b-1

sinhbl'Z = Zb-I (0 cnz 2n)b-i == 00pi i (14.7)
j=n

into (14.6), where the cn and pj satisfy (14.2), yields (14) where

Jn(b,u)= 1 F(b+2n) Q(b+2n,u). (14.8)
nbu)( 2 T)2n rF(b)

Then (14.4) follows from (14.8) and

Q(b+2n+2,u) =Q(b+2nuu)+ ub+2n (u+b+2n+ 1), [1; 6.5.21] (14.9)Q~b2n+,u)=Qb+2~u)f (b+2n+2)

where (14.9) is the result of two integrations by parts of its left hand side.

BFRAC

xa yb a 2 am )
lx~~b) ) (#1 32+ a

a 1, 1 =-- 1 ( +a 1), A=a-(a+b)x=(a+b)(p-x) (15.1)

(a+n-1)(a+b+n-1).0 IX, n1(52

an+i1 (an l) n(b)2 n>l (15.2)

n(b-n)x +a+n + I +n(1+y)], n>O (15.3))3n+ = n-fa+2n-I a+ 2n l

An+l= 3 n+ An+On+ An-i A0 =O, A1 =a(5
(15.4)

Bn+i = 3 n+l Bn +On+, Bn-i B, B1, B=1

An 01  2 _an (15.5)

Bn /3T+ /3 2+ 3n"

m the smallest integer such that

I Am/Bm-An,- /lmI< ( IAm/Binl.

Equation (15) is new and is used over a very large part of the domain: a>1, b>40, with x<p.

Given a tolerance (, (15) is computed by the function BFRAC(a,b,x,y,A,(). The weighting factors cli,

given below, which control overflow and underflow, appear to be new.

Relation (15) is obtained by considering the classical expansion

5



ayb I 1 Ld 2 .(lx(a'h= a3B(a,b) ( 1+1+1+ 

d 2n (a+2n 1)(a+2n) x, n>0 (15.7)

(a+n)(a+b+n)
d2n +, (a+2n)(a+2n+1) x, n>0. (1; 26.5.8], (31, [13] (15.8)

For large a where a>b, we note that d2n O and d2n+i-(1+b/a)x. Thus if

Rn is the iterate

1 d, d2  dn_-2
+ 1+ +dn_. '

then most of the change of values of these iterates occurs in every other iterate. Consequently, the

"associated" continued fraction 2 is considered where
h1 ± b,+

ai= 1, an+i=-d 2n- l d2n

b, =I+di, bn+i=l+d2n+d 2n+1, n>1. [14; p.20]

The iterates R2n are the iterates for this expansion as already pointed out by Aroian in [3] ( with some

corrections given in (13] ). Hence

xa yb a, a2
Ix(a,b) aB(a,b) (bl+ b 2 + )

Now for large a where a>b, it is clear that d2 n;.O forces anO. However, for x-p

we also find that d2nO forces bnz0. This can cause division of 0 by 0 when the iterates of this

continued fraction are computed, or it can cause division to overflow. Thus, this continued fraction is

also not considered appropriate for computational purposes.

In order to eliminate the problems arising from d2n t0, we rescale the coefficients an and bn

with weighting factors cn such that

51=clal, fAn=cn-j.Cnan (n>2), On=cn b n  (n> 1),

where

cn=a+ 2(n-1), n>1. (15.9)

Then the iterates of ..2 are the scaled iterates for a -2 and we

obtain 01+ 132+ 62+

xayb -1 xayb
Ix(a,b)~ ). - I ,Y

a13(a,b) \I31+ 132± l(a,b)\ 1+ 132 2+ 1

which is relation (15). The expressions (15.1) and (15.5) for computing (15) follow from Theorem 2

[1; p.19], where lim An _a .
n In = 0 + 0 2 +

- " " •• . i I | I I



If n<b, then crn>O and On is a positive value not near 0. To insure that the maximum

number of iterations satisfies n<b, (15) is applied only when b>40. In this case, x must also be a

sufficient distance from p when a > 100.

BASYM

Let 7 be an arbitrary positive scaling factor that is assigned below. Then
N

Ix(a,b)k U-L- e-z dn Jn(z) (3- 7 )n x<p (16)
I-r n=o

= a _b - ab paqb 27r(a+b)
a-ib a=+b' ab) B(a,b)N ab

¢(tJ~-l-hlt, t>O (61

an=--" An, -r> 0 (16.2)

A -= 2 -+ +- 1 )n p (_-n], (A 0 =l)

br 1 (16.3)

r an+ 1, '?r,. r an, n= 1,2,...
i=1

n- n-I (n>

n-i
d0 =l, d =-j dic (16.4)

i=0

J,(z) = ' /1 _V V1 dv. (16.5)

/a =< 1)_ (16.6)

N is defined as the smallest integer such that.

N-NdN  jN(Z)(it.1)N + dN- jN_,(z)( -)N- ] 11 ,,z)-0 n

71:



Relation (16) is used only when a and b are large and x p. It appears to be new. Given

A=(a+b)(p-x) and a tolerance e, (16) is computed by the function BASYM(a,b,x,y,A,c). The

expansion is obtained by writing (1) in the form

t(abt)d O<x<. (167)
1xa B)(ab) Jo P"qyi

From (16.1), ,(t)>O for t:Ap and

(a ln ±b lny) (16.8)

Thus if u= 7-;iji for t<p and u = -t) for t>p, then

Ix(a,b) =U/13 e- -- du, (16.9)fz p-t

where z=,(x) if x<p and z=- (x)if x>p. Hereafter, we shall assume that x<p. In order to use

(16.9), u/(p-t) wil! be replaced by its Maclaurin series in u.

From (16.8) and

a ln=aln I(1-P- -a 1 (Pt)n
p P n=l

00 n
b In L-t= n=b -

one obtains

u 2= O(t) 1 (p-t) 2 - An (p-t)n, p-t< min{p,q},

where An is given in (16.2). Thus if an=-n An for y>O, then 2(3-u)2 =s 2A, where

A=E ansn and s=7(p-t). lence, if P(s)=s"A then {2T3yu=P(s). If v=P(s), since
n>o

P is analytic at 0 with P(0)=0, by the Lagrange-Biirmann expansion [8; p.58] the inverse

s=P-l(v) of P is given by

n>i

)-=res(s -
1 A 2),

where res(l ) - n ) is the residue of the series P-". Also for any r#0

A . )(r) k
Ar--Z 1 ks8

k >{u

• - • , a i is a ! i i |8



where bkr) is given in (16.3), [11]. Consequently,

1 h(-n/)
Cn i n i

n_>i n>_0

where dn is given in (16.4), [11].

Now if h=a/b for a<b and h=b/a for a>b, let y=(1+h)/h, (see (16.6)). Then A= - ansn
n>o

for jsi< 1 and

an = q[-+(- )n a<b (16.10)

an =--2p[(-)n+hl+'], a>b.

It can be shown for a=b that the series v/s=E dnvn has a radius of convergence no larger than 4fig
11>0

Indeed, we have

u2 =-av 2 -aln(1 -s2)

and, with v complex, s=0 when v= -2r q-exp(i r/4).
If a<b then A = ans" >0 for O<s< 1 since each an >O. Hence v=s4-AT is defined and real for

11>0

0<s<1. Also, from (16.8) we note that v-+ oc when s-+1, and dv/ds=(s/v)[(1-s)(l+hs)]-#0 for

0<s<l. Consequently, f(v)=v/s=,X can be regarded as a function of v for all v>0. Since it is also

true that the derivatives f n)(v) are bounded for v>0 (see Appendix C), let Mn=sup{If ()(v)l:v>0}

for n>I. ' Then N1 1< 1 (see Appendix C), and for

n-i,,n (v)= fRv) -n: dli v,

1=0

IV'n(v)1<Mn v n/n! (v>0) by the Taylor formula with remainder. Therefore, from 4j3u/(p-t)=f(v)

and (16.9) we obtain

lxab - diZcl (;f' ll(z) + En] z>0Ix(a,b) = U 2e-2 i+E

where Jn(z) is given by (16.5). Also

E1 _< M n/n!( J ()J -(z)= NI n/n!J n (z)[a( 1 +h)] -n/2 (16 11)

9



so that IEnl#0 when a-oo for fixed h. Consequently, (16) is asymptotic for a<b. Also we note that

Jn(Z)=2 (n/2)-2e2r[(n + 1)/21 Q[( + 1)/2,z2)1,

where Q is defined by (14.3), and that Jn(z) can be computed recursively by

JO(z)=(--Fi/4)eZ 2erfc(z), Jl=a- 3 / 2

Jn(z)=2-3/2 (4{2z)n-l + (n- l)Jn 2 (z), n>2.

When a>b the situation is less satisfactory, since it has not yet been shown that (16) is

asymptotic. Nevertheless, the utility of (16) has been established for y<1.05q when b>100 by extensive

computer testing.

Finally, we observe that the defintion of U given in (16) is not suitable for computational

purposes. U can be accurately evaluated using

A(a) =ln F(a)-(a-)ln a+a-ln (27r) (16.12)

In U=A(a+b)-A(a)-A(b).

10



111. DOMAINS FOR SUBPROGRAMS

In this section we specify the regions of application for the five subprograms discussed in the

previous section. A flowchart is given in Fig. 1.

In order to establish such regions the following conditions must be met:

(a) The applied algorithms must be efficient and yield

the desired accuracy over such regions.

(b) It is necessary that J<.9, where J has the value

lx(a,b) or ly(b,a). J is computed by the proper

choice, acccording to (a), of one or more of the

subprograms based on (12)-(16). The complement

is then obtained as 1-J.

Even though analysis was carried out to predict the efficiency and achievable accuracy of the

basic relations over various domains, (a) was established with exhaustive testing by Morris using

double precision versions of the subprograms.

Since J is to be computed to the greatest possible accuracy, the relative tolerance to be satisfied

will be c=max{ 0 ,i0 -15 ) where co is the smallest number for which I+c0>l for the floating point

arithmetic being used. The restriction that (>10-15, thereby limiting the maximum precision to

14-15 significant digits, is made since many of the supporting subprograms are accurate to a

maximum of 14 digits (see section IV).

Arguments are presented near the end of this section showing that condition (b) is always

satisfied. For easy reference we have:

BPSER(a,b,x,c) Relation(12)

BUP(a,b,x,y,Na) Relation(13)

13GRAT(a,b,x,y,w, 15(,IERR) Relation( 14)

BFRAC(a,b,x,y,A, 15() Relation(15)

BASYM(a,b,xy,A,100( ) Relation(16)

There are two main domains to consider, namely nin(a,b) S I and min(a,b) >1. It should be

recalled that if a and b, and x and y are interchanged in one of the above subprograms, then the

subprogram, except for 1UP, yields J-ly(b,a)=I-1x(a,b) with I-J=lx(a,b). BUP gives on the

interchange Iy(b,a)- ly(b+ N,a).

11



min(a,b)< 1

If x>I1/2, then a and b, and x and y are interchanged. For x <1/2, (17) is used for computing

J~x(a,b) and (18)-(20) are used for computing J=Iy(a,b). In (19) and (20), wo is the initial value

of w and J is the final value of w.

BPSER(a,b,x,c) max(a,h):51, a~min(0.2,h) (17)

max(a,b): <1, a< min(0.2,b), xa <0.9 (17.1)

max(a,b)>1, b<1 (17.2)

max(a,b)>1, b>1, x<0.1, (bx)a<0.7 (17.3)

BPSER(b,a,y,c) max(a,b):51, a<min(0.2,b), xa> 0 .9 , x>0.3 (18)

max(a,b)>1, b>l, x>0.3 (18.1)

BGRAT(b,a,y,x,w,15c,IERR), w0 =0

max(a,b)>1, b>15, 0.1<~x<0.3 (19)

max(a,b)>l, b>15, x<0.1, (bX)a>O.7 (19.1)

BGRAT(b+N,a,y,x,w,I5c,IERR), wO=BUP(b,a,y,x,N,c), N =20

max(a,b)>1, b>1, 0.1<x<0.3, b<15 (20)

max(a,b)>1, b>I, x<0.1, (bx)a>0.7, b<15 (20.1)

max(a,b)!<1, a<min(0.2,b), xa>0.9 , X<0-3 (20.2)

min (a,b) > 1

If x>p then a and b, and x and y are interchanged. For x~p, (2l)-(26) are used for

computing J~x(a,b). In (22)-(24) N is the largest integer less than b and S=b-N. Also, in (23) and

(24) w0 is the initial value of w and J1 is the final value of w.

BPSER(a,b,x,c) b<40, bx<.7 (21)

BUP(S,a,y,x,N,c) + BPSER(a,,x,c)

b<40, hx>.7, x<Z.7 (22)

BG RAT(a,6,x,y,w, 15,jIERR), wO= BUP(S,a,y,x,N,()

b<40, x>.7, a> 15 (23)
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BGRAT(a+ M,b,x,y,w,1I5c,IERR), M=20

w0 =BUP(g,a,y,x,N,c) + BUP(a,b,x,y,M,c)

b<40, x>.7, a<15 (24)

BASYM (a,b,x,y, A, IO00) b>40, 100<a<b, x .97p (25)

b>40, 100<b<a, y!51.03q (25.1)

BFRAC(a,b,x,y,A,15() b>40, a<b, a<100 (26)

b>40, l0O<a<b, x <.97p (26.1)

b>40, a>b, b<100 (26.2)

b>40, 100<b<a, y>1.03q (26.3)

These statements are summarized in the flowchart for BRATTO in Fig.1I. Proofs are now given

which verify that J<0.9 is always satisfied (requirement b above). The arguments use the facts that

In F(t) is strictly convex for t>0, [1; 6.4.10], and that Ix(a,b) is a decreasing function of a and an

increasing function of b. The latter result is proven in Appendix B. Since In P(t) is strictly convex for

t>0, we also note that t (t)=Aj{In r(t)}, [1; 6.3.11, is an increasing function of t.

For (17): a 1 b<l, x<1/2, a~min(.2,b)

If a>0.2 then

3 rlx(a,h))<Ix(a,1 )=xa<(1/2)*2 =0.8706.

If a>b then

Also 1I/ (a,a)=0.5 from (4).

For (17.1): a<1, b<I, x<1/2, a<min(.2,b), ~a< 0 .9

For (17.2): a>!1, b<1, x<1/2

J = I x(a, b)!5 x (1 , 1)= x < 1/2

For (17.3): a<], b>l, x<0.1, (bx )a <0-7

Integrating (1) by parts gives

e -XI-1 +ht-Ia Jta(I~ t)b2dt}=~~bK

< G(a, b){ a1x~~ +iaJ (0 a

13



Let

Since 0/O9alnF=iP(a+b)-Inb is an increasing function of a for a>O, lnF is strictly convex and

hence F is strictly convex for a>O. Thus F(a,h) 51 for O<a<1 since F(O,)=F(1,b)=1. Hence

J=Tx(a,b) 5(bx)a /r(a+ 1) O.7/r(1.46163... .)<0.791.

For (18): a 1, h<I, 0.3<x<0.5, a<min(.2,b), xa> 0 .9

From (1), with

Ix(ash)>!H(a)abhx H(a)(O.9)/2>.45, (a< b),

where

11(a) =r(a+h+1)/f(a+1)r(h+1)] (0 a<1).

The last inequality on Ix follows from the fact that 11(a) is increasing and that H(O) 1. Hence

j Iy (h,a) =1 -Ix (a,)O .55.

For (18.1): a<1, b>1, 0.3<x<0.5

J=Iy(b,a)<Iy(l,l) 1 -x O.7

For (19): a<1, b>15, 0.1<x<0.3

J =Iy(b,a) yl l)=yb(I)h <(.9 ) 15OOS

For (19.1): a< 1, h> 15, x<0.1, (hx)a >0.7

Then

From(1), using (l-t)b-i>(lX)h1 and recalling F(a,h) in the proof of (17.3),

Ix (a, b) : r(a) 1-xb (xa > F(a,b)(bx)aj/r(a+ 1).

Now 49F/Oh=g(a,h)F where g(a,h)=10(a+b)-1P(b)-a/h. Since gaa<O [1; 6.4.10], g is strictly concave

for 0<a<1. Thus, since g(O,b)=g(1,b)=0 [1; 6.3.5], g(a,h)>O for 0<a<1 and L9F/Ob>0. Hence, F is

increasing in b for 0<a<l and

F(a,b)>F(a,i)=r(a+ 1).

Thus Ix(a,b) O0.7J for 0<a<l, which implies that J117.9

14



For (20): a<1, l<b<l5, 0.1<x<0.3

J =Iy(b,a) <Ily(b,1) =yb =(1-x)b <(0.9)b><0.9

For (20.1): a<l, 1<b<15, x<0.1, (bx)a>0.7

Proof is the same as that given for (19.1).

For (20.2): b<1, x<0.3 , a<min(.2, b), xa>0.9
a2 fXt -'( --~ - t

Ix(a,b) _Ix(a,a)-K(a) 2 j ta-I (1 _ t)a- dt,

where

K(a) =r(2a+ 1)/(I(a+ 1)r(a+ ')], (0<a< 1).

From (i), using
(I-t),-, > I, 0<t<x,

it follows that

Ix(a,b)> K(a)xa/ 2>0.45K(a).

Since 89K(a)/Oa=2K(a)[¢(2a+1)- b(a+1)]>0, K(a) is an increasing function. Hence K(a) 1 and

J =y(b,a)<0.55.

For (21)-(26): a>1, b>1

In this case it can be shown that if x<p then

(1-1/e a<b (27)

11/2 a>b.

A proof of this result is given in Appendix A. Hence

J= flx(a,b) x<p (28)

.ly(b,a) x>p.

15



Notation for the flowchart in Fig.1

12 Refers to (12) for computing Ix(a,b) (BPSER)

1"2 Refers to (12) for computing Iy(b,a) (BPSER)

13 Refers to (13) for computing lx(a,b) (BUP)

f--3 Refers to (13) for computing Iy(b,a) (BUP)

14 Refers to (14) for computing Ix(a,b) (BGRAT)

IR Refers to (14) for computing Iy(b,a) (BGRAT)

15 Refers to (15) for computing Ix(a,b) (BFRAC)

15 Refers to (15) for computing Iy(b,a) (BFRAC)

16 Refers to (16) for computing Ix(a,b) (BASYM)

1-6 Refers to (16) for computing ly(b,a) (BASYM)

p=a/(a+b), q=b/(a+b)

I.C.= Interchange a and b; x and y.

[b]) largest integer < b.

,-a-(a+b)x, a<b; \-(a+b)y-b, a>b.

Numbers above some of the flowchart boxes refer to the labels in the Fortran listing of

BRATIO.

16



cm,

z a

0+z AL

Uz

oc..< ) OD 0

jV A

ca0

0l CI.~

I nA 0.

0 0

0 V, A 117



IV. AUXILIARY FUNCTIONS

In order to compute Ix(a,b) and I - lx(a,b), procedures are needed for evaluating f(a), In 1'(a),

the error function erf x, exp(x 2 ) erfc x, the incomplete gamma function Q(a,x), (14.3), for a<1, and thle

functions

ex -1 (29)

In r(1+x) (-0.2<a<1.25)

I/r(I +a)-1 (-0.5<a< 1.5)

e-x xaI/F(a) (a>0, x O)

These functions are discussed in [6]. Also, procedures are needed for computing

A(a)=ln r(a)-(a-.5)ln a+a-.5 In(27r) (a>8) (30)

ALGDIV(a,b) =In [r(b)/r(a+b)], (a>O, b>8)

BCORR(a,b) =i.(a) + (b) - A(a+b) (a,b>8)

BETALN(a,b)=1n B(a,b) (a,b>O)

BRCOMP(a,b,x,y) =xayb /B(a,b) (a, b>O, 0<x< 1, y=l1-x).

Rational minimax approximations are used for the functions given in (29). Experience indicates that

such approximations normally generate less error and can be considerably more efficient than the

standard expansions. However, minimax approximations have the disadvantage of being limited to a

fixed maximum precision. The mimnimax approximations used are designed to achieve a maximum

precision of 14 significant digits.

If A(a) is needed only for a>20, then the sum

1/(12a) -1/(360a 3 )+..

in the asymptotic expansion of In [(a) [1; 6.1.41] may be used. If a> 15 then thle iniinax

approximation
4 i

A~) Ec/
n =0

co= .83333 :33333 33333E-01

cl=-.27777 77777 70481E-02

c2 = .79365 06631 83693E-03

c..=-.59515 63364 28591E-03

C4= .82075 63703 53826E-03
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can be applied, and if a>8 the minimax approximation

5
A(a)= E dn/a

n-0

do= .83333 33333 33333E-01 (32)

d 1 =-.27777 77777 60991E-02

d 2= .79365 06668 25390E-03

d3=-.59520 29313 51870E-03

d4= .83730 80340 31215E-03

d5=-.16532 29627 80713E-02

can be used. These approximations were obtained by Morris [9]. On the CDC 6000-7000 series

computers, they are accurate to within I unit of the 1 4
t h significant digit.

Expansions for ALGDIV(a,b) and BCORR(a,b) use (32). From the definition of A

ALGDIV(a,b)=w-(a+b-.5)ln(1 +a/b)-a(n b-I) (33)

w=A(b)- A(a+b).

Let
p=a/(a+b), q=b/(a+b), Sm=l+q+...+q m - l (m>l).

Then
1 q'-1 q)m --p~, PSm 1 1

q=(Iq)S=pS, bmbm (a+b)m (34)

Thus, from (32) we obtain

-- 5 dn S2n+ (35)

which completes the algorithm for ALGDIV(a,b). Also

BCORR(a,b) = A(ao) + [A(bo) - A(a o + bo)]

ao=min{a,b}, ho=max{a,b},

where (32) and (35) are applied.

If a<b, then BETALN(a,b) can be accurately computed when a> 1. If a>8 then

BETA LN(a,b) =(.5 In (2ir) -. 5 In b) + BCORR(a,b)-u -v

ti= -(a-.5) In1a/(a)+ I)), V b ln(I +a/b)

20



is applied. If 2<a<8 then a is reduced to the interval [1,2] by

B(a,b)= a-I B(a-,b).
a+b-1 l b)

Consequently, it can be assumed that a<2

If b>8 then

In B(a,b)=ln r(a)+ALGDIV(a,b)

is applied. If 2<b<8 then b is also reduced to the interval [1,2] when a>l. Thus, we need only

consider the cases: 1<a<2, 1 < b<2, or a<1 and b<8. If a> 1 then

In B(a,b)=ln F(a) + In r(b)-In r(a+ b)

is appropriate. No loss of accuracy due to subtraction can occur since In [(a), In F(b), and -In F(a+b)

are nonpositive. However, subtraction does occur when a<l. It currently is not clear how loss of

accuracy due to subtraction can be avoided when a< 1. Therefore, in this case BETALN is not used in

BRATIO.

If min{a,b}<8 then BRCOMP(a,b,x,y) can be computed directly from its definition.

Otherwise,

BRCOMP(a,b,x,y)= b e- z

z=[a(1 -A/a)+be(1 +A/b)]+BCORR(a,b)

is used, where A is given in (15.1).
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V. CONCLUDING REMARKS

Formulas (12), (13), (14), (15), and (16) for lx(a,b) are of tile form IS, where S is a series. For

example, for (15) y=xayb/B(a,b) and S is a continued fraction. On the CDC 6000-7000 series

computers, almost no error is generated in computing the series S over the domains specified in section

1II. The series is normally accurate to within I or 2 units of the 14 ih significant digit. However, the

precision of the factor - is restricted by the inherent error of Ix(a,b). Extensive testing on the CDC

6000-7000 series computers comparing the results obtained by BRATIO with results from double

precision code, indicates that the precisions of the values obtained for lx(a,b) and 1-lx(a,b) by

BRATIO approximate the inherent errors of these functions up to a maximum of 14 significant digits.

On any computer, accuracy is restricted to 14 digits because of the algorithms used for the auxiliary

functions in section IV.

On the CDC 6000-7000 series computers, a maximum of 7 terms of the series (14) for

BGRAT, and a maximum of 11 terms of (16) for BASYM were observed for the domains specified in

section III. Frequently, 40 or fewer terms of (12) for BPSER suffice, but a maximum of 92 terms has

been observed when a is small, b is large, and x ; .3. Also, 40 or fewer terms generally suffice for the

continued fraction (15), BFRAC, but, a maximum of 58 terms has been observed when a or b is

exceedingly large and x : a/(a + b).

In practice, BRATIO has been found to be a reliable and efficient subroutine. As was noted in

the previous sections, in order to develop such a subroutine new formulas were needed for ix(a,b), a

surprisingly elaborate specification of the domains of usage for the various formulas had to be given,

and a number of auxiliary functions had to be treated with extreme care. Thus, the development of

B11ATIO for efficiently cotiltuting lx(a.h) and 1 -1x(a.b) to high relative accuracy was not a simple

task.
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VI. NUMERICAL EXAMPLES

A collection of 16 examples using BRATIO is given in Fig.2. The results were obtained using

the CDC 6000-7000 series single precision trwrication floating arithmetic. As was noted in section III,

the function BUP is used only with BPSER or BGRAT and appears in (20), (22), (23), and (24). The

following three cases illustrate its use. The quantity c below is set to approximately .710E-14 (see

p. 11).

Case (1). a=.10, b=14.5, x=.29, y=.71

From (20) w0 =BUP(14.5, .10, .71, .29, 20, )

=I.71(14.5, .10)-I. 7(34.5, .10)

=.17776 09989 0838E-3.

Hence, if w is assigned the initial value wo then a call to BGRAT(34.5, .10, .71, .29, w, 15c, IERR)

yields the value

w =wo+1.71 (34.5, .10)=1.71(14.5, .10)

=.17785 31648 7898E-3.

Also

129(.10, 14.5)=.99982 21468 3512.

Case (2). a=1.5, b=20.5, x=.065, y=.935

(Note that bx>.70, A=a-(a+b)x=.07>0)

From(22) wo =BUP(.50, 1.5, .935, .065, 20, e)

=1.935(.50, 1.5)-1.935(20.5, 1.5)

=.56745 07805 9439.

Then

1.065(1.5, 20.5)=w 0 +13PSER(1.5, .50, .065)

=wo+.71754 32115 7741E-3

=.57462 62127 1016,

1.93 (20.5, 1.5)=.42537 37872 8984.

Case(3). a=10.5, b=1.5, x=.80, y=.20, (A>0).

From (24) W0 =BUP(.50, 10.5, .20, .80, 1, ()

=1.2o(.50, 10.5)-1.20(1.5, 10.5)

=.15518 20005 6352,

w0 =W0 +BUP(l0.5, .50, .80, .20, 20, c)

w0 +l. 8 0 (10.5, .50)- l.8(30.5, .50)

=WO+.32149 19363 8971E- 1

.18733 11942 02,15.
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Hence, if w is assigned the initial value w0 then a call to BGRAT(30.5, .50, .80, .20, w, 15C ,IERR)

yields the value

w =w0 +1.80(30.5, .50)

or

1.o( 10.5, 1.5)=.18756 94122 3880.

Also,

1.20(1.5, 10.5)=.81243 05877 6120.

a b x y Ix(a,b) 1 -Ix(a,b)

.1 .8 .40 .60 .88776 70523 5302E+00 .11223 29476 4698E+00

.1 .8 .60 .40 .92957 83432 6833E+00 .70421 65673 1668E -01

.1 2.3 .40 .60 .97448 97683 7361E+00 .25510 23162 6386E -01

.1 2.3 .60 .40 .99196 58486 2884E+00 .80341 51371 1598E -02

5.0 40.0 .99 .01 .10000 00000 0000E+01 .13053 04681 1410E-74

5.0 10.0 .99 .01 .10000 00000 OOOOE+01 .96509 74271 4997E-17

10.0 38.0 .02 .98 .26944 43561 3309 E-07 .99999 99730 5556E+00

70.0 10.0 .85 .15 .23472 44941 6827E+00 .76527 55058 3173E+00

* 70.0 50.0 .99 .01 .10000 00000 OOOOE+01 .54279 07073 1686E -66

* 70.0 50.0 .10 .90 .47438 77486 2163E -38 .10000 00000 OOOOE+01

* 75.0 50.0 .10 .90 .61550 21193 1591E-42 .10000 00000 OOOOE+01

* 500.0 501.0 .50 .40 .99999 99999 3299E+00 .67009 77013 4757E-10

500.0 501.0 .40 .60 .10148 03038 4399E-09 .99999 99998 9852E+00

1000.0 1001.0 .49 .51 .19153 11043 9543E+00 .80846 88956 0457E+00

1001.0 1000.0 .49 .51 .17957 42144 6754E+00 .82042 57855 3246E+00

(a=5.OF+20, b5 'JE+3, x=1.0, y=l.OE-17

x(ab)=.49811 93659 6617, ly(b,a)=.50188 06340 3383)

Due to inherent error, the 4 starred examples are correct to within 1 unit of the 12th

significant digit. All other cases are correct to within 5 units of the 14th significant digit.

Fig. 2 16 Examples of BRATIO
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AP~PENDIX A

BOUNDS ON Ix(a,h) WHEN x~ra/(a~b), MlNja,bj >1



BOUNDS ON Ix(a,b) WHEN x=a/(a+b), MIN{a,b)>1

The purpose of this appendix is to show that

1/2 <Ip(a,b) < I-e - 1 if 1 <a<b

(A-1)
1/e < Ip(a,b)< 1/2 if 1 <b<a

where p=a/(a+b) and q=I-p=b/(a+b). Since 1.5 (a,a)=.5 from (4), we shall assume that aqb.

Lemma (A-I): If A(h)=(I +I/h) - h for h > 0 then A is a decreasing function. Also, A-*1 when

Sh-# 0 and A-+I/e when h -+oo.

The lemma is given for reference. It is a well known result.

Corollary (A-I): If a> 1 then l/e < lp(a,1) < 1/2.

Proof: From (1) we obtain lp(a,1)=pa=(1+1/a) "a. Then from the lemma the corollary

follows.

Corollary (A-2): If b > 1 then 1/2 < Ip(1,b) < 1- I/e.

Proof: Immediate from (4) and corollary (A-I).

Since the above corollaries hold, in order to verify (A-I) it suffices to assume that a, b>l. The

following reasoning is due to James C. Perry (NSWC). Let

B-f'ta- 1(1l-tOb- ldt (A-2)

Bp--f~ta-i(1 -t)b-ldt (A-3)

B~p-- I pta- 1(1 - tOb- ldt. (A-4)

If x=-(1-t) b / a then

Bp=Jb (X-x1+/~~ (A-5)

Hp= -j (x-xi+a/b)a-Ldx (A-6)

where

A- qb/a ( +a/b) -bfa (A-7)

Also l/e < A < I by lemma (A-i), and we now consider the functions

f(x)=x-x i+a / b and F(x)=f(x)a - 1  (A-8)

for 0<x<l.
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From (A-7) and (A-8) we note that

f(O)=F(O)=O, f(lfrF(1)=O,

f(x) and F(x) have a unique maximum at X= A, and

f'1(x) and F'(x) are positive (negative) for 0 < x < A (A <x < 1).

For any x2 such that A < X2 < 1 let

r(x 2 ) (A-9)

where x, is the unique value in [0,A) where f(X)=:f(X2) [see Fig. 3].

We now examine r(X2 ).

XX 2 1
Fig. 3 Graph of f(x)

Lemma (A-2): If g(x) is twice continuously differentiable on [0,d], g(O)=g'(O)=0, and g" is

increasing (decreasing) on (O,d], then h is continuous and increasing (decreasing) on (0,d] where

fg(x)/x 2  (x>0)
h(x) 9t"(0)/2 (x =0).

Proof: Assume that g" is increasing on (0,d]. Since h'(x)=(xg'-2g)/x 3 for x > 0, let

k(x)=xg'-2g for x >0. If x >0 then there exists 0 < <x such that g'(x)= g"( )x by the Mean-

value theorem, so that

k'(x) =xg"(x) -g'(x) =x[g"(x) -g"( )] > 0.

Therefore, k(x) is increasing for x >0. Since k(0)=0, hl(x)=k (X)/X 3 > 0, which proves that h is

increasing on (0,d]. Also, since g(0)=g'(0)=0, h(x)-g"(O)/2 when x-+0 by L'Hlopital's rule. If g"(x)

is decreasing on (04d] then apply the lemma to -g.

Theorem (A-i): Let r(x) denote the function defined by (A-9). If a <b (a> b) then r(x) is

increasing (decreasing) for A <x < 1. Also, r-+ I when x-4 A.

Proof: If 0(h)=f(A)-f(A+h) for 0<h<1-A then 0i(0)=0, 0&(0)=-f'(A)=0, and

O'f~)=(/bq)A~h-1+a 1bfor hi>0. Hence, if a<b (a>b) then 0" is decreasing (increasing), so that
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O(h)= 0(h)/h 2 is decreasing (increasing) by lemma (A-2). Also, (h)- -0"(0)/2 = a/(2bA) when h-+0

by the lemma and A=qb/a

Similarly, if 4(h)=f(A)-f(A-h) for 0<h<A then (h)=V(h)/h 2 is increasing (decreasing)

when a<b (a>b), and (h)-*P"(0)/2=a/(2bA) when h-.0.

Now if A <x <1 and xI < A where f(xl)=f(x), then

r2_=x--A\2 f(A)-f(xl) (x-A)2 _(A-xj)

A-x - (A-x 1 ) 2 f(A)-f(x) €(x-A)

sotht .,- a/(2bA)

so that r +a/(2bA- 1 when x--A. If a < b then when x increases, A-x 1 increases, €(A-x 1 ) increases,

d(x- A) decreases, and hence r 2 increases. Similarly, r2 decreases when a>b. Consequently, since r>O

the theorem follows.

Theorem (A-2): If 1 <a < b then Ip(a,b) < 1- 1/e.

Proof: Since a<b, r(x)<r(1)=(1-A)/A for A<x<l by theorem (A-1). Also, since

lp(1,b) < 1-1/e by corollary (A-2), we shall assume that a > 1. Now let

t=1IAA (1 x) A<x<1 (A-10)

so that 0 < t < A. For x > A let x, < A where f(xl)= f(x). Then t < A, and from

r(x)-- A- < -A we have x, < t. Therefore,

F(1- A At) =F(x)= W(Xl) _ F(t)

so that

B = F(x)dx=a 1-A AF(l_1-At)dt

,5a -A A F(t)dt= (1-1)Bp3 <(e--1)Bp

-b A Jo 1

from (A-5) and (A-6). Therefore, from (A-2)-(A-4), Bp <(e-1)Bp=(e-1)(B-Bp) so that

lp(a,b) =Bp/B < Il- l/e.

Theorem (A-3): If 1 < b < a then Ip(a,b) < 1/2.

Proof: Since a > b, r(x) < I for A <x < 1 by theorem (A-1). Also, since Ip(a,l) < 1/2 by

corollary (A-I), we shall assume that b > 1. Now let

t =2A-x A < x < 1. (A-11)

Since b/a < 1, .5 < A < I from (A-7) and lemma (A-1). Therefore, 0 < 2A-I < A and 2A-1 < t < A.
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For x>A let x,<A where f(xj)=f(x). Then t<A, and from r(x)- x <I we have x, <t.A-x Iw hv lt

Therefore,
F(2A -t) = F(x)--- F(xl) < F(t)

so that

Bp =AF(x)dx--- A F(2A-t)dt

< AA_ F(t'dt< AF(t'dt=Bp

from (A-5) and (A-6). Therefore, from (A-2)-(A-4) Bp < Bp= B-Bp so that Ip(a,b)= Bp/B < 1/2.

Theorem (A-4): If a,b > I then

1/2< Ip(a,b) < 1-1/e when a<b

l/e < Ip(a,b) < 1/2 when a > b.

Proof: Immediate from (4) and theorems (A-2) and (A-3).

A
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MONOTONIC PROPERTIES OF Ix(a,b)

The purpose of this appendix is to show that [x(a,b) is a decreasing function of a and an

increasing function of b.

Theorem B: If a>O, b>O, and 0<x(l, then x(ab < 0 .

Proof: Let

f(t;a,b)=ta-l(1-t)b-i,

hereafter simply denoted by f(t). We have

lx(a,b) Bx(a,b)/B(a,b)

Bx(a,b) = Jta-i(I -t)b (it, B(a,1)-) J ta-i(1 -t)b-j (it.

Then

B[x(a,b) B(a)j ua-1(l -)b- In udu-Bx(ab) I ta-( -t,)b-1nt (dta __ab J0 J0

aa B(a,b) B(a,b)

[B(a,b)]2 Ox(a,b) =i f al 1 -t)I -x Ua - ( 1- u)b- (Ih u-In t.)du dt

0 [f(t)f(n)(ln -In t) du] dt+fo 7 f(t)f(u) (Inu-Int)dujdt.

But the first double integral on the right is zero. Indeed, with

Tl,t= 7 I f(t)f("' (Inn - In t) du]dr,

where the subscripts are used to indicate the order of integration (ii then t.), we have, by renaming the

variables,

Tn,t-Tt,ii"

Interchanging the order of integration then gives

Ts,t Tt,u =-u t

which implies that 'FT,t =0. Therefore,

which is negative since Inu - In t<0 for u <t. Thus,

_lx(a~b) <0 for all a>O, b>0, 0<x<l
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Remarks. A more direct proof of (B-i) can be obtained by differentiating 1/[1+Iy(b,a)/lx(a,b)I. Also,

since lnu-lnt<u-t<O for O<u:5t(1, from (B-I) we obtain the slightly stronger inequality

B(a,b) Bx (a+ 1 ,b) B (a+ 1 ,b) Bx (a,b)

- r [(a, b)]2  [B(a,b)] 2

Corollary: If a1 <5a 2 then Ix(a 2,b) 5Ix(aj,b)-

Corollary: If b1 5b2 then Ix(a,bi)!5Ix(a,b 2).

Proof: Since ly(b,a) decreases as b increases, Ix(a,b)=Ily(b,a) increases as b increases.

We close by noting that precisely the same technique used in Theorem B establishes a

corresponding result for the incomplete gamma function. If

P(a,) = 1 )Jetta-dt, a>O, x O,

then OP(a,x)< 0 , and hence if a1 5a 2 then P(a2 ,X):5P(aj1 x).
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UNIFORM ASYMPTOTIC BEHAVIOR OF (16)

The purpose of this appendix is to show that (16) has uniform asymptotic behavior for a<b

and a( + a/b) -* oo. The proof will depend on showing that the n' derivative of the function f(v)=v/s

(v>0) has a bound not depending on h=a/b when a<b and n is odd.

Theorem (C-i1): If a <b then 0 < f 1(v)<1I for v >O0.

Proof: Since !L'=(l -s)(1 +hs) and f=X we have

f'(v)=dff=!-v ds..i v2 (1-s)(i+ hs).(Ci
dv s s 2 dv S

Also

s n>i

An= 1+hn h+h>0 nen(-3
2q (n + 1)(n+2) +n(n +1) > ee 03

A n 1-hn+, + h-~hn >0 n odd.
2q 7(n+l)(n+2) n(n+1)

Therefore f(v)=F, An sn-i>0 is an increasing function for s>0 (and hence for v>0). From (C-2)

I An sn > 0 for 0 <s<l1, so that Aj ,5 1. Consequently, f 1(v)Z An 5 n-i < E An! l for
n51 n51 n51n5

v>0.

Theorem (C-2): If a~b then f'(v) -+ I when v -+ oo.

Proof: From (C-3) E An/(2q)=(1+h) E l/[n(n+l)], where
n>i n>2

S1/[n(n+1)]= F, [i/n -1/(n+l)]= 1.
n>i n51

From (16.7) we have

v 2=-2 [-In(l-s)-1ln (+hs)]. (C-4)

Consequently, we now consider v as a function defined for 0< h< I and 0 <s<i1.

Lemma (C-1): If n =0,1, 2,... then vn (I1_8) can be extended to a continuous

function 41 1(h,s) for 0<h<1 and 0<s<1. Also, On(h,l)0O for Oc<h<I.

Proof: From (C-4) we obtain

G I



2n( s)2 =() (-ksg(hs)n-k

ctk(S)= [-In (l-s)]k (I _S) 2  O<s<l

g(z)= -In (I +z)/z 0<z< 1.

By L'Hopital's rule g(z)-*-I when z-#O. Hence, if g(z)=g(z) for O<z<l and (0)=-1, then g(z) is

continuous for O<z<1. Also if w=- In (1-s) then

im ak(s)= ira w kexp(-2w)=0.

Thus, if a k()=ak(s) for O<s<l and ak(l)=0, then

1/2
Ln(_s) I n h) n  E =(k)zk

(s ) [sg(hs)] n -k

is a continuous extension of vn(l1-s) for 0<h<I and O<s<1. Also, On(h.l)=0 since each Uk(1)=0.

Theorem (C-3): If n>2 then f (n) (v) can be extended to a function that is continuous for

O<h<l and O<s<l. Also, f(n)(v) - 0 when v - oo.

Proof: Given a fixed value O<h<l. Then for any polynomial P in s (and h), k=0,1,2,...

and m=1,2,... ,

S k vk-i k~
d [Y-(1-s)P]=k (I-s) P- m v (l-s) 2 (l+hs)P

vk+i vk+i I_)(
s +j (1-s)(1+hs)P+smi (1 -s) 2 (1+hs) P1

where P1 is the derivative dP/ds. By induction (starting with C-i) it follows for n>2 that f(n1)(v) is a

finite sum of terms of the form (vk/sm)(1-s)P. Consequently, by Lemma (C-i) f (n)(v) has a con-

tinuous extension on(h,s) for O<h<l and O<s<l. Also, Vn(h,)=0 so that f ()(v) -+ 0 when v--*o.

Remark. For n>2, since f(v)=I dkvk in a neighborhood of 0 and f(n)(v) -+ 0 when v-oc, by
k>o

Theorem (C-3) f (n)(v) is bounded for v>0. lowever, the bound may depend on h.

We now prove that a bound exists not depending on h when n is odd.

Definition: Given a series on(h)s n  where cacti n(h) is continuous for 0<h< 1.
n>0

Let Mn =max { n(h) : 0<h < I}. '[hen the series E'an sn is said to satisfy condition (*) when

FM n s converges for Isl < 1.
n>o
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